LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - NOVEMBER 2018
MT 5509- ALGEBRAIC STRUCTURE - II

Dept. No. \qquad Max. : 100 Marks
Date: 01-11-2018
Time: 09:00-12:00

PART A

ANSWERALL THE QUESTIONS
 $(10 * 2=20 m a r k s)$

1. Is the union of subspaces is a subspace? Justify.
2. Express the vector $(1,-2,5)$ as a linear combination of the vectors $(1,1,1),(1,2,3)$ and $(2,-1,1)$ in \mathcal{R}^{3} where \mathcal{R} is the field of real numbers.
3. Define a basis of a vector space V.
4. Determine whether $T: R^{2} \rightarrow R^{3}$ defined by $T(a, b)=(a+1,2 b, a+b)$ is a vector homomorphism or not.
5. Define orthonormal set.
6. If $T \in A(V)$ and $\lambda \in F$ and λ is an eigenvalue of T then prove that $\lambda I-T$ is singular.
7. Define trace of a matrix and give an example.
8. Show that the matrix $A=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ is orthogonal
9. Find the rank of the following matrix over the field of rational numbers $\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)$.
10. Define unitary linear transformation.

PART B

Answer any five questions:
11.Prove that a non-empty subset W of a vector space V over F is a subspace of V if and only ifW is closed under addition and scalar multiplication.
12. If S and T are subsets of a vector space V over F , then prove the following:
i) $\quad \mathrm{S}$ is subspace of V if and only if $L(S)=S$.
ii) $\quad S \subseteq T$ implies that $L(S) \subseteq L(T)$.
iii) $\quad L(L(S))=L(S)$.
13.If V and W are two n - dimensional vector spaces over F. Then prove that any isomorphism T of V onto W maps a basis of V onto a basis of W.
14.If $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ are distinct eigenvalue of $T \in A(V)$ and if $v_{1}, v_{2}, \ldots v_{n}$ are eigenvectors of T belonging to $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$, respectively then prove that $v_{1}, v_{2}, \ldots v_{n}$ are linearly independent over F .
15. Prove that $T \in A(V)$ is invertible if and only if T maps V onto V.
16. Show that any square matrix A can be expressed uniquely as the sum of a symmetric matrix and a skew-symmetric matrix.
17. For what values of λ the system of equations $x_{1}+x_{2}+x_{3}=1, x_{1}+2 x_{2}+4 x_{3}=\lambda, x_{1}+4 x_{2}+10 x_{3}=\lambda^{2}$ over the rational field is consistent?
18. If $T \in A(V)$ is skew-Hermitian, then prove that all of its eigenvaluesare pure imaginaries.

PARTC

Answer any two questions:
19.Prove that the vector space V over F is a direct sum of two of its subspaces W_{1} and W_{2} if and only if $V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=\{0\}$.
20. a)If V is a vector space of finite dimension and W is subspace of V , then prove that $\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W$.
b) If $T: U \rightarrow V$ is a homomorphism of two vector spaces over F and U has finite dimension then prove that $\operatorname{dim} U=$ nullity of $T+\operatorname{rank}$ of T.
21. Prove that every finite-dimensional inner product space V has a orthonormal set as a basis. 22.a)Prove that the linear transformation T on V is unitary if and only if it takes an orthonormal basis of V onto an orthonormal basis of V.
b) If $T \in A(V)$ then prove that $T^{*} \in A(V)$. Also prove that
i) $(S+T)^{*}=S^{*}+T^{*}$
ii) $(S T)^{*}=T^{*} S^{*}$
iii) $(\lambda T)^{*}=\bar{\lambda} T^{*}$
iv) $\left(T^{*}\right)^{*}=T(\mathbf{1 0 + 1 0})$

